بررسى تجربى سطح تماس تاير با استفاده از تكنيك پردازش تصوير

$$
\begin{aligned}
& \text { امين شرفخانى } \\
& \text { عارف مردانى دانیيار گروه مكانيك بيوسيستم دانشگاه اروميه } \\
& \text { آرش محبى استاديار گروه مكانيك بيوسيستم دانشگاه اروميه } \\
& \text { سجاد درفش یور } \quad \text { دانش آموخته دكترى گروه مكانيك بيوسيستم دانشگاه اروميه }
\end{aligned}
$$

چكيده:
هدف از اين تحقيق معرفى روش جديدى براى اندازه گيرى سطح تماس تاير در شرايط ديناميكى بود. اصول اين روش مبتنى بر حركت يك تاير بر روى سطح شيشه ای بود كه روى آن مايع ريخته شده بود. تصويربردارى از زير تاير صورت گرفت و پس از انجام مراحل قبل از پردازش ، آستانه گذارى و پس از پردازش در نرم افزار MATLAB ، منطقه مربوط به سطح تماس تاير اندازه گيرى شد. تجزيه و تحليل انجام شده نشان داد كه تنوع منطقه تماس داراى نظم معينى است. با حركت دادن چرخ ، يك منطقه تماس يكسان از نظر كمى و شكلى ايجاد شد. پارامترهاى متغير مورد استفاده در اين تحقيق سرعت پيشروى و بار پرخ بود.

تعداد 4 تاير با نسبت مقطع يكسان و عرض و قطر رينگ متفاوت بر روى آزمونگًر تك چرخ نصب و آزمونها به انجام رسيده است. نتايج حاكى از تفاوت سطح تماس ديناميكى نسبت به سطح تماس استاتيكى در همه شرايط بار و سرعت پيشروى بود. افزايش سرعت پيشروى منجر به كاهش سطح تماس گرديده است. با افزايش عرض تاير، مقدار سطح تماس تاير افزايش يافت و نيز تغييرات سطح تماس نسبت به عرض تاير تقريبا به صورت خطى ديده مىشود. طول تماس استاتيك تاير با سطح زمين، در همه تركيبهاى تيمارى آزمايش شده، بيشتر از طول تماس حالت ديناميك بوده است. با افزايش بار، مقدار فشار تماسى كاهش يافته و تغييرات فشار تماسى نسبت به بار تقريبا مستقل از مقدار سرعت پيشروى ديده شده است.

وارگّان كليدى: تاير، سطح تماس، سطح تماس ديناميك، آزمونگر تك چرخ، انباره خاك.

مقدمه

الكَهاى سطح تماس تاير وسيله نقليه بر روى زمين و توزيع فشار متناظر با تغييرات بار وسيله نقليه مىتواند نشانگر كيفيت تاير و حالت سايش باشد. همحنين، اندازهیيرى الكوى سطح تماس تاير مىتواند براى طراحى و ارزيابى عاج تاير و نيز ارزيابى

تعليق وسيله نقليه مفيد باشد. اندازءگيرى اين سطح تماس مىتواند در تخمين مقاومت غلتشى كه در اتالاف انرزى موثر است نيز سودمند باشد. هنگامى كه مواد تاير به صورت مداوم طى غلتش تاير تغيير شكل مىدهند، اتالف به دليل رفتار ويسكوالاستيك مواد تاير رخ مىدهد. (گَرچنگَ، 1990). عليرغم مشكلات زياد ، محققان سعى در درى رفتار سطح تماس به دليل رابطه آشكار بين سطح تماس تاير و ساير خصوصيات تاير مانند كشش ، راحتى سوارى و سايش لاستيك دارند. به طور كلى روشهاى اندازهگيرى سطح تماس تاير عبار تند از روش كاغذ حرارتى، روش سطح تماس رنگگ، روش سطح رنگّى، روش صفحه شيشهاى، روش برداشت و پردازش تصاوير ديجيتال و روش سنسور پيزو .روش تصوير ديجيتال (DIC) يك روش تجزيه و تحليل تصوير ، مبتنى بر تصاوير ديجيتالى است كه مى تواند كانتور و تغيير مكان يك جسم تحت بار را در سه بعد تعيين كند كه اغلب براى اندازه گيرى تغيير شكل ها ، كرنش ها و جريان هاى نورى استفاده مى شود. اجرا و استفاده از اين نرم افزار نسبتاً آسان است. از دوربين ها براى ثبت مكان هاى خاص استفاده مى شود و موقعيت مكان نسبت به مكان هاى ديگر ثبت مى شود. سپس مفهوم همبستگى متقابل از شيفت هاى اندازه گيرى در مجموعه داده ها استفاده مى شود. اندازهگيرى سطح تماس تاير با سطح به روشهاى مختلفى توسط محققين به انجام رسيده است. در سادهرين روشها با پاشيدن رنگَ در اطراف تاير و سپس با جابجا كردن تاير سطح تماس ايجاد شده بر روى خاك اندازءگيرى مى گردد (Taghavifar and Mardani, 2013). تقوى فر و مردانى در مطالعه ديگرى به بررسى سطح تماس چرخ و خاك به عنوان پارامتر مههم و تاثيرگذار بر تنشهاى به وجود آمده در خاى پرداختهاند. اندازهیيرى سطح تماس چرخ و خاكى در اين تحقيق با استفاده از تكنيك پردازش تصوير و روشهاى مبتنى بر هوش مصنوعى به انجام رسيده است (Taghavifar and Mardani 2014) . درفش پور و همكاران با استفاده از تصويربردارى از زير تاير و پر ازش تصاوير به تعيين (Derafshpour et al. 2019) سطح تماس چرخهاى آجدار پرداختهاند

مواد و روشها

در اين تحقيق، از تعداد 9 تاير استاندارد با مشخصات نشان داده شده در جدول ب-ا استفاده شده است كـه همعَى داراى نسـبت مقطع يكسان بوده و قطر و ثهناى تاير ها متغير در نظر كرفته شده است. همه تايرها از نوع راديال بوده و نسبت مقطع آنها •\& است
 شده است. سرعت پيشروى در سه سطح ه/•، ا و ه/1 متر بر ثانيه در نظر گرفته شده است. طى تحقيق حاضر، براى ثبت داده هاى مربوط به سطح تماس چرخ از يكى باكس فلزى استفاده شده است كه در داخل كانال خاكى سويل بين و در مسير حركت چرخ ثابت شده است. اين باكس توسط يك صفحه شيشه اى با ضخامت • م ميليمتر و ابعاد

فرايند حركت چرخ از روى شيشه و باكس در كف آن قرار گرفته است. به منظور تامين نور كافى در هنگًام تصويربردارى از لامپ هاى LED در چهار طرف دوربين استفاده شده است كه در هنگام داده بردارى نور را به سمت يالا و در سطح درگيرى چرخ و سطح شيشه ای پروجكت مى نمايند.

$$
\text { شكل } 1 \text { باكس شيشه ای و بخش هاى پروجكت نور و تصويربردارى }
$$

سطح روى شيشه با استفاده از يك مايع سفيد (تر كيب نشاسته و آب) با ضخامت َ ميليمتر پوشانده مى گردد. با عبور چرخ از روى لايه مايع و تماس با شيشه، تصوير بردارى از داخل باكس انجام شده و اين تصوير، تركيبى از يك زمينه سفيد رنگَ و بخش هاى تيره ای است كه ناحيه در گيرى چرخ و سطح شيشه را نشان مى دهد.

شكل r يكى فريم از فيلم ذخيره شده نمونهاى از آزمايشها

شكل r ريختن مايع بر روى سطح شيشه

پس از آماده شدن سطح شيشه و آغاز تصویربردارى توسط دوربين داخل محفظه، چرخ با سرعت پيشروى و بار معين از روى شيشه عبور مى كند. با گذشتن چرخ از روى شيشه فيلم بردارى قطع شده و دوربين براى كنترل ضبط فيلم و انتقال به كامپيوتر از محفظه خارج مىگردد. شكل ץ-r| يك فريم از فيلم ذخيره شده نمونهاى از آزمايشها را نشان داده است. در محدوده تماس تاير با سطح شيشهاى، مايع كنار زده شده و سطح تماس در قالب يک منحنى بسته با رنگگ تيره نمايان است.

براى تشخيص نواحى تماس تاير از مناطق ديگً ، تصوير با استفاده از روش آستانه Otsu به مناطق تماسى و غير تماسى تقسيم شد. اين يک الگُور يتم بدون نظارت است كه آستانه هاى بهينه را بر اساس هيستوگرام تصوير انتخاب مى كند. يافتن يك آستانه بهينه ، كه پيكسل ها را به طور دقيق در كلاس هاى تماسى و غيرتماسى تقسيم بندى كند ، از اهميت بالاسس برخوردار است. عوامل مختلفى از جمله بازتاب نور ، روشنايى ناهموار و آلودگى مايع منجر به افزايش خطا مى شود. براى كاهش تنوع شدت پيكسل هاى غير تماسى ، يک تصوير تفاوت تعر يف شد به طورى كه در آن پيكسل هاى لمس شده و دست نخورده به خوبى از هم جدا شده اند.

استفاده از روش Otsu در اين روش مشكلاتى دارد چرا كه پيكسل ها را به پیکسل هاى تماسى و غير تماسى تقسیی مى كند ، بدون اينكه در نظر داشته باشد پيكسل هاى لمس كننده اى وجود دارد يا نه. اين روش در فريم هايى كه پيكسل هاى تماسى و غير تماسى وجود دارند ، به خوبى كار مى كند. با اين حال ، برخورد با فريم هايیى كه پيكسل هاى تماسى در آنها وجود ندارد (وقتى تاير روى شيشه قرار نگیرد) ، نمى تواند به درستى همه پیکسل ها را طبقه بندى كند. شكل ¢ نتايج را براى يك نمونه فيلم نشان مى دهد كه در آن همه پيكسل ها لمس نمى ش.ند و همچننين نتيجه تقسییم بندى آن با استفاده از روش Otsu است.

شكل ¢ تشخيص ناحيه تماسى و غير تماسى در پردازش تص.ير سطح تماس

براى اندازه گيرى ناحيه تماس ، تصوير تقسيم شده اسكن شده و تعداد پيكسل هاى لمس كننده شمارش مى شود. هر پيكسل متناسب با مقدار مشخصى از منطقه است كه به صورت تجربى تعيين شده است. عرض شيشه متناسب با • • متر است.

نتايج و بحث
در این مطالعه به بررسى اثر دو پارامتر سرعت پيشروى و بار روى چرخ بر مقدار سطح تماس و طول تماس تاير با سطح سخت برای تعداد شش تاير با مشخصات استاندارد If If پرداخته شده است.

شكل ه تغيير منطقه تماس را در قابهاى مختلف در يك شرايط ديناميكى نشان مى دهد. اين نمودار از جنبه هاى مختلف قابل بررسى است. اولين نتيجه اين است كه منطقه تماس تقريباً يكى عملكرد دوره اى جابجايى است. از آنجا كه بسيارى از مطالعات اخير در تعيين سطح تماس تاير در شرايط استاتيك متمركز بوده است ، موردى براى مقايسه نتيجه بدست آمده وجود ندارد.

بر رسى اين نتايج حاكى از نقطه نظراتى به شرح موارد زير است كه بيشترين تاثيريذيرى فشار تماسى تاير از جانب بار روى تاير بوده است و با افزايش بار، مقدار فشار تماسى با شيب نسبتا تندى كاهش يافته است. اين موضوع در شر ايطى اتفاق افتاده است كه با توجه به اينكه طبق نتايج بخشهاى قبلى، افزايش بار موجب افزايش سطح تماس تاير نيز مى گردد. به عبار تى فشار تماسى كه به صورت نسبت بار به سطح تماس تعريف شده است با افزايش بار، همزمان افزايش پارامترهاى صورت و كاهش مخرج كسر را تجربه مى كند و از اين رو به صورت دوسويه باعث كاهش فشار تماسى شده است.

شكل 9 تاثير بار بر فشار تماسى تاير در سطوح مختلف سرعت پيشروى

در اين تحقيق به مطالعهى تاثير بار و سرعت پيشروى بر مشخصات سطح تماس تايرهايى با هندسه متفاوت طى آزمايشهاى تجربى با استفاهه از آزمونگر تك چرخ موجود در آزمايشگاه ترامكانيك گروه مكانيك بيوسيستم دانشگاه اروميه پرداخته شده است در اين تحقيق ، يك سيستم جديد براى اندازه گيرى پويا اين معيار ارائه شده است. يك جعبه فلزى با سطح شيشه استفاده مى شود و يك مايع سفيد روى شيشه ريخته مى شود. يك دوربين ديجيتال نيز در زير جعبه قرار داده شده است كه با عبور لاستيك از روى آن ، يك فيلم ضبط مى كند. فريم هاى ويدئو با استفاده از تكنيك هاى مناسب قبل از پردازش ، آستانه كذارى و پس از پردازش ، به مناطق "لمس" و "غير لمس" تقسيم مى شوند. منطقه مناطق لمس به طور خودكار اندازه گيرى مى شود. آزمايشات نشان داد كه سيستم پيشنهادى ابزارى دقيق براى اندازه گیيرى بلادرنگَ منطقه تماس پويا است. نتايج به دست آمده از آزمايشهاى تجربى حاكى از آن بوده است كه با افزايش سرعت پيشروى چرخخ، مقدار سطح تماس تاير تقريبا به صورت خطى كاهش يافته است و اين روند در تايرهاى قطر lf 14 و 10 مشاهده مى شود و البته اين روند در تايرهاى سه گَانه با قطر رينگ ها اينج بيشتر صادق بوده است. در همه تركيبهاى تيمارى آزمايش شده، مقدار سطح تماس استاتيك تاير با سطح زيرين، بيشتر از سطح تماس حالت ديناميك بوده است و همحِنين مقدار سطح تماس استاتيكى از روند خطى تغييرات سطح تماس- سرعت پيروى نمى كند به عبارت ديگر روابط سطح تماس- سرعت براى سطوح سرعت پيشروى كمتر از 1 متر بر ثانيه نمىتواند همچֶنان روندى خطى داشته باشد.

منابع

1. S. Derafshpour, A. Mardani, M. Valizadeh, Evolutionary algorithms application for improving the tire rolling resistance based on Wismer-Luth model, Neural Computing and Applications, (2019) 1-11.
2. Godbole, R., Alcock, R. \& Hettiaratchi, D. 1993. The prediction of tractive performance on soil surfaces. Journal of Terramechanics 30(6):443-459.
3. Hallonborg, U. 1996. Super ellipse as tyre-ground contact area. Journal of Terramechanics 33(3):125-132.
4. Komandi, G. 1990. Establishment of soil-mechanical parameters which determine traction on deforming soil. Journal of Terramechanics 27(2):115-124.
5. Lyasko, M., I. 1994. The determination of deflection and contact characteristics of a pneumatic tire on a rigid surface. Journal of Terramechanics 31(4):239-242.
6. Maclaurin, E. B. 1997. Proposed revisions to MMP based on the tractive performance trials with single pneumatic tyres and a modular track system. DERA/LS/TR970122/1. DERA, Chertsey, UK.
7. Schwanghart, H. 1990. Measurement of contact area, contact pressure and compaction under tires in soft soil. Proc. 10th ISTVS Conf, Kobe Aug 20-24, 1990. I:193-204
8. Sharma, A. K. \& Pandey, K. P. 1996. A review on contact area measurement of pneumatic tyre on rigid and deformable surfaces. Journal of Terramechanics 33(5):253-264.
9. H. Taghavifar, A. Mardani, Potential of functional image processing technique for the measurements of contact area and contact pressure of a radial ply tire in a soil bin testing facility, Measurement, 46 (2013) 4038-4044.
10. Taghavifar, H., and A. Mardani. 2017. Off-road Vehicle Dynamics-Analysis Modeling and Optimization. Switzerland: Springer International Publishing.
11. Upadhyaya, S. K. \& Wulfsohn, D. 1990. Relationship between tyre deflection characteristics and 2-D tyre contact area. Transaction of the ASAE 33(1):25-30.
12. Ziani, F. \& Biarez (1990). Pressure sinkage relationship for tyres on very loose sand. Journal o Terramechanics 27(3):167-177.

Abstract

: The aim of this research was to introduce a new method for contact area measurement in dynamic conditions. The principal of this approach were based on moving a tire over a glass surface that had been poured liquid on it. After pre-processing, threshold ing, and postprocessing operations in the MATLAB software, the area related to the lug parts was measured. The extracted analysis indicated that the contact area variation has a periodic discipline By moving the wheel, an identical contact area was created quantitatively and formally. The variable parameters used in this research were inflation pressure and wheel load. In the constant inflation pressure, wheel load could not increase the average con tact pressure significantly. As a result, most of the incremental load was spent on the deformation of the tire. However, it is suggested that the other parameters of tire type and forward velocity could be investigated further, in order to study their effects on the con tact area.

