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Abstract

Developing a special method for maintenance ofteéet and mechanical equipment of industrial compes
necessary for improving maintenance quality andiced) operating costs. Vibration analysis providssful
information about machine control and performarmetifie engineers to help them to the productiarthis
study, two methods based on vibration analysis prasented for fault diagnosis in ball bearings.rsfiton
signals from the alternator of Massey Ferguson @8B) type tractor was studied. Wavelet neural ngtwo
(WNN) and The Multi-Layer perceptron (MLP) neuratwork classifier was used in fault diagnosis. The
highest accuracy was obtained for (WNN) classifidrich equals to 96.36%.

Keywords: Fault Diagnosis, Ball Bearing, FFT spectruMulti-Layer Perceptron (MLP), Wavelet Neural
Network (WNN).
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1. Introduction

It has been known for many years that the mechhmitzgrity of a machine can be evaluated by dethdnalysis of
the vibratory motion (Eisenmann, 1998). Vibratiagnals carry information about exciting forces ahd structural
path through which they propagate to vibrationgdchrters. A machine generates vibrations of spéeciilor’ when in

a healthy state and the degradation of a componihin it my result in a change in the characterttod vibration
signals (Williams, 1994).

Machine condition monitoring has long been accemtedne of the most effective and cost-efficierirapches to
avoid catastrophic failures of machines. It hasnbegown for many years that the mechanical intggifta machine
can be evaluated by detailed analysis of the \dlbyanhotion (Eisenmann, 1998).

In this research, density data produced by vibnatmalysis was compared with previous data. Nurakriata
produced by Fast Fourier Transform were compared Rast Fourier Transform in healthy Ball Beariimgorder to
guantify the effectiveness of the Fast Fourier $famm technique (Wowk, 1991).

2. Materialsand Methods

2.1. The Multi-Layer Perceptron (MLP) neural network

A multilayer neural network includes an input layan output layer, and one or more hidden layeashHayer may
include many neurons. A neuron in each layer ofrtbigvork is connected to all the nodes or neurarthé previous
layer (Haykin, 1999). An architectural graph of tialer perceptron with one hidden layer is showirigurel.

In the modeling of systems by multilayer neuralwwak, after defining the structure, the neural ratawveights should
be designed in a way that with applying the inpatsiery close output to the real output is achievidds is called
neural network training, which means setting théghis to decrease the errors between network oatmlitreal output
(zarei, 2012).

Input layer Hidden layer Output layer

Figure 1. Topology of a two hidden layer MLP

The simplest form of ANN is the perceptron, whiamnsists of one single neuron (see Figur€Rjtput is defined to be
(Vitch, 2005):

Y=¢ (w,x) (1)
w(—=06,wy, ..., W) (2
x =1, %5, ) Xm) ()
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Figure 2. Perceptron with m inputs

2.2. Wavelet neural networks (WNN) neural networ k

Wavelet neural networks combine the theory of weteebnd neural networks into one. A wavelet neoedlvork
generally consists of a feed-forward neural netwaiikh one hidden layer, whose activation functians drawn from
an orthonormal wavelet family. One application cdwelet neural networks is that of function estimatiGiven a
series of observed values of a function, a wavedévork can be trained to learn the compositiothaf function, and
hence calculate an expected value for a given input

That is, a feed-forward neural network, taking amemore inputs, with one hidden layer and whoseatutayer
consists of one or more linear combiners or sumnTérs hidden layer consists of neurons, whose aiitiv functions
are drawn from a wavelet basis.

The WNN in this paper is designed as a three-latreicture with an input layer, a hidden layer, andoutput layer.
Each layer has one or more nodes. Figure 3 shosvsdhematic diagram of the three-layer WNN. Monlavelet is
widely used as the activation function in the nodiethe hidden layer (Ghohizadeh, & Salajegheh8208en, & Yang
2006). It is expressed by Eq.4 and shown in Figure

t2

w(t) = e 2z cos5t 4)

The back propagation algorithm is commonly adogtedthe training of WNN in the literature [Lin & sim, 2005.
Subasi & Alkan, 2005] and it is also employed ia tlesigned WNN of this paper.

Hidden Layer

Input Layer Output Layer

Figure 3. Schematic diagram of the three-layer WNN
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Figure 4 Morlet wavelet activation function

The output of a wavelet neural network is a lingaighted combination of theavelet activation functions.
Figure 5 shows the form of a single-input wavelbine output is defined as:

Yae = P (5)

Wherel and t are the dilation and translation parametsgectively (Vitch, 2005).

UO—————H ¥ Uae(u)

c/ .
A t

Figure5. A Wavelet Neuron
2.3. Feature Extraction

Vibration signals contain a large set of data fachesample therefore some statistical and frequdonyain functions
are applied to reduce feature vectors. Featurea&tidn method is a dimensionality reduction techaids widely
applied in condition monitoring. Seven features avektracted from RMS values of vibration velocifysignals by
using the statistical and vibration parameters. Sofmused Parameters are: Maximum, mean, Skewmasscentral
moment of 4, Crest Factor, Shape Factor, ImpulstoFalhe central moment of 3 and the central mdroéb. These
features are shown in Table 1.

Table 1. features and their formulas

Formula Feature Description
K_1S(K) mean
K
Max(|S(K)|) Max
K_1(S(K) — F)* The central moment of 4
(K—-1)
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Max(|S(K)|) Crest Factor
RMS(S(K))
RMS(S(K) Shape Factor
1
BNl
Skewness
k=1(S(K) — Fy)?
(K- DF}
F, Impul se Factor
1
K §=1|5(K)|
YK _(S(K) —F)? The central moment of 3
(K—-1)
YE_(S(K) — F,)° The central moment of 5
K-1)

2.4. Characteristic defect frequency

Local defects or wear defects cause periodic ingsuis vibration signals. Amplitude and period afg¢l impulses are
determined by shaft rotational speed, fault locgtiand bearing dimensions. The frequency of thesgulises,

considering different fault locations as in Figéres obtained by (6)—(8) (Tandon, & Choudhury, 129®ei & Poshtan,
2007).

Ball defect frequency is two times the ball speqgiuency and can be calculated as:

foa =, (1= GHY) 6)

Inner race defect frequencies are given by
_np Ba
fua=gN(1+32) )

Outer race defect frequencies are given by
n

foa =2 N (1-3) (8)
In these relations, fs is the shaft rotation freque nb is the number of balls, d is the rollerndiéder, D is the pitch
diameter of the bearing, and a is a contact arglhawn in Figure 6.
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Figure 6- Bearing dimension and characteristic ddfequencies
3. Experimentation and testing

The test bench of an Alternator ball bearing isngihin Figure 7 the number of Ball Bearing was 62QESwith seven
balls. Details of the Ball Bearing are given inléad.

i

Figure 7. Alternator of Massey Ferguson

Table 2. Detail of Ball Bearing

Ball Bearing Description
Number of Balls 7 Balls
Ball diameter 66.4 mm
Pitch diameter 263.9mm
Contact angle 0 degree

A bearing data set containing nine subsets is mbtbirom the experimental system under the fiviediht conditions.
The five conditions are described in Table 3.
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Table 3. Description of the faulty bearings

Condition Label
normal condition a
ball fault b
fault in the inner race c
fault in the outer race d
housing rub fault e

These faulty bearings are shown in Figure 8. Eath dubset corresponds to one of the nine condion it consists
of 50 samples. Each sample is a vibration signataining 16384 sampling points. Figure 9: (a) —d@e raw data

samples for the nine bearing health conditionsn¢ajnal condition, (b) ball fault, (c) fault in tivener race, (d) fault in
the outer race, and (e) housing rub fault.

Outer race fault nén race fault

Ball fault Iging fault

Figure 8. Faults in the alternator ball bearings
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o 2000 4000 6000 BOOO 10000 12000 14000 16000 18000

o 2000 4000 6000 8000 10000 12000 14000 16000 18000

Amplitude

o 2000 2000 BO00 BO00 10000 12000 14000 16000 18000

“o 2000 4000 B000 BO00D 10000 12000 14000 16000 18000

o 2000 4000 G000 8000 10000 12000 14000 16000 16000
Point

Figure 9. Data samples of the ball bearing
4. Results and discussion

The experimental setup consisted of ball bearingnfthe alternator of massey ferguson (MF 285). Balirings are
SKF6201. From the bearing data sheet, pitch dianegpeal to 21.99 mm (R= 38.5 mm). This bearing has seven balls

(n = 7) with an approximate diameter of 5.53 mm=®&53 mm). Finally it is assumed that contact anglalmost
zero, i.e. a =0.

Based on these parameter values, and considedhdghth motor is operating at the measured shaédsp&1300 rpm
(frm = 21.66 Hz), the characteristic vibration fueqcies are calculated from {€3) equations as listed in Table 4.

Table 4. Characteristic defect frequencies

Fault location Characteristicatgffrequency
Outer race foa = 107.34 HZ
Inner race fia =189.8 HZ
Balls foa = 80.6 HZ

Figure 10 shows the measured vibration spectrurd ftate normal, ball fault, fault in the innereaéault in the outer
race and housing fault. The frequency spectrumachefault was different and overall vibration vaugiso were
different at the same frequency.

The results showed that area under Fast Fouriersioan carves were indicated a problem. The maoza Below Fast
Fourier Transform curve showed the faults were deep
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Figure 10. Original velocity vibration of the sidriar three different faults, (a): normal, (b) b&kult, (c) inner race
fault, (d) outer race fault, (e) housing fault

The results showed that area under Fast Fouriersioan carves were indicated a problem. The maoza Below Fast
Fourier Transform curve showed the fault was deeper

Fault defect classification of the two neural neteeo(MLP) and (WNN) are used for testing and tnagnsamples and
classification of faults in the tables 5.

10
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Table 5. Serial classification level MLP & WNN nediks

Testing Training WNN MLP Classification result

22 50 A A Normal

22 50 B B bfalli It

22 50 C C nneér race fault
22 50 D D uter race fault
22 50 E E Hiogsfault

In Table 5, 72 samples are acquired for each statustating speed 1300 RPM of Tractor, 70% of whéce used for
training and 30% for testing. In the constructidradVILP & WNN based model normal, ball fault, faudtthe inner
race, fault in the outer race and Housing faulBAC, D and E respectively. Similarly, the 10 featuextracted from of

the FFT spectrum.
Table 6 and Table 7, shows respectively confusiaitrim of the MLP network and WNN network and how to
classification for the 4 fault and a normal stéiat total of 5 classes will be determined.

Table 6 .Confusion matrix for MLP

A B C D E
A 2 0 0 0 0
B 0 2 1 0 0
C 0 0 21 | 0
D 1 0 0 1 0
E 0 ] 0 0 20
Table 7. Confusion matrix for WNN
A B C [D E
A 22 0 0 0 0
B 0 21 1 0 0
C 0 0 21 1 0
D 0 0 0 22 0
E 0 2 0 20

The results on a test set in a multi-class pregfictire displayed as a two dimensional confusiorrimnas mention
using 5-fold cross validation. Out of 110 instandssmber of cases are 22 for each of A, B, C, D Bnlearing

respectively. From the Table 5, it is cleared WaP network with instant has correctly predicted 22, 21, 21 and 20
instances of A, B, C, D and E bearing respectivélye other WNN network with optimized features lcasrectly

predicted 22, 21, 21, 22 and 20 instances of AC H) and E bearing respectively as shown in Table 7

5. Conclusion

Results showed that vibration condition monitorangd FFT Spectrum technique could detect fault diagnof Ball
Bearing. Vibration analysis and FFT Spectrum cquifavide quick and reliable information on the cdiwsti of the Ball
Bearing on different faults. Integration of vibii condition monitoring technique with FFT Spectrtechnique
analyzes could indicate more understanding abaginaisis of Ball Bearing.

This paper deals with vibration based fault diaggo$ Ball Bearing four classical states viz. noknell fault, fault in
the inner race, fault in the outer race and houfang are on Ball Bearing.

11
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Set of features have been extracted using FFT Specnd classified using The Multi- Layer Percept(®LP) and
The Wavelet neural network (WNN). The accuracy wiatd is equal (95.45%) for the (MLP) network and #tcuracy
obtained is equal (96.36%) for the (WNN). And bynparing these two networks together can be condltiat the
(WNN) of Ball Bearing defects investigated in thisidy to better classification.
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